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1. The process of a laminar-to-turbulent transition and the mechanisms which lead to

boundary layer turbulence are not only fundamental problems in fluid mechanics but also

urgent problems in engineering applications. An understanding and quantitative analysis of

transition mechanisms would make it possible to reliably predict and control it.

Experiments conducted in the last 25 years have made it possible to understand that a

transition to turbulence is not unambiguous and different variations of this transition are

possible, but the occurrence of three dimensional phenomena in otherwise two dimensional

flows constitutes an inherent feature of a transition. Two types of transitions were detected

in a boundary layer on a plate, namely the so-called Klebanoff transition [1] and the

subharmonic transition [2-5]. These types of transitions can be distinguished by their driving

mechanisms. A K-transition occurs with the development of a very nonlinear two

dimensional wave of sufficiently high intensity. A subharmonic transition occurs with

perturbations of much lower intensity and is characterized by the excitation of a broad

spectrum of low frequency pertubations in the vicinity of a subharmonic of the fundamental

frequency, the formation of certain spatial structures, and then the rapid rise of intensities of

all perturbations.

Theoretical studies [6-9] revealed the existence of a resonance mechanism which can

explain the powerful excitation of Tollmin-Schlichting waves. The model developed includes

the interaction of a triplet of waves (a Tollmin-Schlichting plane wave and a pair of oblique

subharmonics) and the collective interaction of plane and quasiplane waves with a packet of

subharmonic waves [10-13]. It was demonstrated that a subharmonic transition is a result of

the uncontrolled growth of three dimensional background perturbations and their subsequent

effect on the fundamental frequency. This model has made it possible to explain all the

characteristics of a resonance transition and obtain good quantitative agreement with

experiment results.

All the aforementioned experimental and theoretical studies apply to a boundary layer on

a flat plate. It is obvious that these data are completely inadequate for studying a transition

on actual streamline bodies. Data on gradient flows are limited to calculations on the basis

of linear theory [14]. In light of the fact that under actual conditions a subharmonic

transition is most probable when the oncoming flow is not very turbulent, the task of studying

the characteristics of a resonant mechanism of interaction in triads in gradient flows seems

urgent. This is the purpose of this study. In it we use Faulkner-Skan profiles as model

profiles.

2. The velocity field of perturbed flow in a boundary layer may be represented as
--4.

z_-- {U + _', _v', _v'}, (l)



where _ (u', v', w') are respectively the {x, y, z} components of perturbation of an intensity

_ 1; {U(x, y), 0, 0} corresponds to primary flow with an accuracy to within terms "-- 1/Re; U

= Ue (x) when
y _ ,,o With an exponential change in velocity outside the boundary layer U_ (x) = U o

x,_the velocity profile U(y) inside the boundary layer can be determined from a

Faulkner-Skan equation (U = _t):

with boundary conditions

¢io)=_,'(o)=o, _)_ _ =p_ n-...

Here

is a nondimensional

x-direction is

Y

lateral coordinate. A natural nondimensional variable in the

/ ._x /'ff-_ =__Re.X=X

Within the framework of these conceptions, the perturbation of longitudinal velocity may

be represented as follows, under the assumption of local parallelism of flow:

s-

u' (x, y, z, t) = _ Aj (Re) eV_% (y, Re, k_) ei°J,
j=l

Oj = _a_dx + kjz -- ¢ojt, ] = t, 2, 3. (3)

a,, zz_, o_ + i_fj = Q_(a. k,, Re)-
.... _r

can be determined by means of an Orr-Sommerfeld eigenvalue problem.

A synchronized triad of the type described can be defined by the conditions

(o), a, k, "f)z=(o), a, --k, "f)3, ¢o2,8=1/2¢o_, kt----0.

For slowly changing complex amplitudes A_ = aje _*

the following system of equations (_t-----0) isvalid: _,.-a
( 1-_x--'_l)al =_S1A2Aah_,

v2,3 _._ -- _:,3 A2,3 : eSAIA3,2h+,

aj_;i lx = x o : a,o, _l_i

In this case vj are complex group velocities; the coefficients S_. and S are expressed

by the solutions of eigenvalue problems; the terms
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h + (Zla') take into account low intensity interactions with an increase in desynchronization
in the triad

X

'I(Ace ----a, - a_ - a_) : h± = -Z. eiAdx'

where o

d A__--Aa,
dz

and the averaging interval

X >> e-tAc_/a.

When desynchronization is slight

A_/a _

the factor under the integral may be removed, and _ X

h -4- _ ei fA_,dx,
x 0

which agrees with the previously used formula [10-13]. If desynchronization is significant (A _/cz"

",-" 1), then h__ --* 0. In this study we used the approximate formula

h± _ eia_x-- 1

ih_X '

X

where -- 1 S Aadx.
A(7, -- .z:-- x o

"o

System (4) is used to model the development of an isolated two dimensional (j = 1)

Tollmin-Schlichting wave in the presence of a background of spatial subharmonics (j = 2, 3)

for different gradient parameters /3 = 2m/(m + 1). With the normalization used

max I uj (Re, y. ks) I = t
O._y<c_

the modulus of amplitude aj is equal to the maximum longitudinal velocity of the jth

component with respect to the thickness of the boundary layer.

As the wave evolves, the dimensional magnitudes of frequency and the z-component of the

wave vector are maintained. Under this condition in the case of ,6' _ 0, the nondimensional

frequency parameter F = t,or/v_(x) and the nondimensional wave number k change with a

change in the Reynolds number:

F (Re) = F (Reo) : Re _-.,, [ Re _1-_-
[ _%eo) , k (Re)=k (aeo) _--R--_.] ,

and Re o corresponds to a starting point of x o

Below we give the results of calculations for two fixed values of frequency cO

corresponding to two values of the frequency parameter:

Ft(Reo)--=t,t5"10-' (I) r_ Ft(Reo)=0,3i5"10-' ,--,.



In both cases we examined Reynolds numbers whose origins (Re o ) lie in the vicinity of

the maximum rates of increase for a given frequency. Both ranges are depicted schematically

in Figure 1.
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Figure 1. Ranges I and II of the Reynolds numbers in question
I_: --0,i (D, 0 (e), 0,t (s).
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Figure 2. Curves of the increase of the components of the triplet

_--_0,1; 1Reo-450; F 1 (1Reo) =. i,t5-10 -4, b-0,275;
X-500.
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3. A number of qualitative properties of the evolution of coupled perturbations in a triad

are independent of the gradient parameter and are determined by the resonant nature of

interaction. Let us examine them using an example of a triplet in gradient flow with B =
-0.1.

Typical curves of the increase of a T-S plane wave (solid lines) and an inclined

subharmonic wave (dashed lines) are given in Figure 2. As in the case of nongradient flow

(10), there exists a rather extended region of parametric pumping of the subharmonic of the

plane wave, and the latter behaves linearly. After intensities have been equalized

(a --=az ,_;_ at)

where occurs a stage of nonlinear interaction leading to an abrupt increase in the intensities
of all the components of the triplet (curves 1, 2). This is the property of nonlinear resonant

instability which is "explosive" in nature and is important for application to the transition

process. However this behavior of perturbations is manifested when initial amplitudes and
interval lengths (Re o , Re_ ) are sufficient for equalizing intensities in the region of

instability of the primary wave or somewhat to the right of it. In the opposite case the
perturbations will be damped.

A decrease in initial amplitudes a j. (Re o ) and a(Re o ) and the presence of a relative

perturbation phase shift at the starting point

A ,_ _- 0 (A_b = _._- _- _3 ) cause the "explosion" to shift downstream (curves 2, 3). The
amplitude of the primary wave is the main factor determining the evolution of a triplet with a

wide variation of other parameters.

4. In principle, the question of the excitation of three dimensionality in the type of

transition in question seems quite clear. The excitation mechanism is parametric pumping of

random background perturbations of a plane wave, but the structure of this three

dimensionality requires its own explanation.

Experiments in a nongradient boundary layer [3-5] have indicated that three dimensionality
in the pretransition region is manifested in the formation of certain spatial structures which

can be detected by an imaging technique. They are characterized by a wavelength a_ which is

approximately twice that of the length of the plane wave and a certain ratio of wavelengths in

longitudinal and lateral directions ax/_z = k/_

On a plate, values of 2,, /2z ranging from 1.36 to 2.96 were obtained with different

perturbation intensities and frequency parameters. In other words, from the background one

can distinguish a predominant perturbation with a certain k which varies widely in relation to

parameters.

In a number of studies [3, 5, 15] it was assumed that the resonant mechanism in symmetric

triads is incapable of explaining this discrimination of a predominant mode. It is based on
the idea that interaction is realized primarily in resonant triads (zaa'= 0). On a plate in

resonant triads the relation ;t,,/9,z _ 1 is fulfilled, which corresponds to perturbations

propagated at an angle of approximately 45 degrees to the direction of flow, which is in

contradiction with experiments. However the requirement for exact resonance, which does



not take into consideration the relationships of the coefficients of equation (4) to k is not
necessary. The authors of [10] and [16] demonstrated that on a plate is excited an entire k

spectrum of three dimensional perturbations whose peak corresponds to propagation angles
of 50 to 63 degrees (or)_,/)'z = 1.4 to 2), which provides a complete explanation for

experiment data. It seems natural that the same discrimination mechanism operates in
gradient flows. Let us examine it in detail for two values of the gradient parameter: /3 =
-0.1 and 0.1.

Figure 3 illustrates the relatiomhips of desynchronizations ,_a to Re for different adjusted
wave number values i
for B = 0 (solid curves) and _ = -0.1 (dashed curves). Different values correspond to

different points Re pe_where Zig= 0 is fulfilled. In the case of a zero pressure gradient this
condition is fulfilled when

= arct_,(k/az) = 45 + _8 °

and a decrease in b merely causes the point Re p,s to shift in the direction of higher Re. In
contrast to this case, when /3 = -0.1 there exists a minimum value of b,_;,_ such that for
smaller b the condition

ACr = 0 is nowhere fulfilled. The resonance points belonging to the

(Rer , Re _: ) range correspond to angles 1_ = 53 to 60 degrees. The adjusted numerical

values are independent of frequency.

When B = 0.1 resonance conditions and the relationship of_ato b are the same as in the
case of nongradient flow. The local rate of increase of the subharmonic in the parametric
region is a function of Re, b, and the amplitude of the plane wave:

i da
a dz

---_(r = Real {(?_ + eSAj_+)/v_}.

Figure 4 (solid curves 1-6) illustrates the relationship (7 (b) for f3 = -0.1 at the point Re

= 574 inside a curve of neutral stability (c.n.s.). Curve 1 corresponds to linear instability (a t _-
0). At low primary wave amplitudes a:z (Reo ).,.<0.015%, as in the linear case, planar
subharmonics are the most unstable (curve 2). When a I (Reo)-0.015% (curve 3), there

appears a pronounced peak of the rate of increase when b 4:0 which corresponds to inclined

subharmonics with k/a'L= 1.37

( J = 53 degrees), which in turn correspond to resonance conditions in the triad. With an

increase in a 1 (Reo) in the range 0.015 to 0.4% (curves 3-5) the peak of cr (b) shifts toward
k/_l.6, and with a further increase in a 1 (Re o ) its position remains unchanged (curves 5,

6). At point Re lr with the same initial amplitudes the ratio k/a.tzvaries from 1.9 to 2.7.

Due to this relationship between predominant propagation angles and Re, during a process

of parametric evolution three dimensional subharmonics with different, Re-dependent ratios

k/a t (for a fixed ax (Reo)) will have the greatest amplitudes of longitudinal velocity a(Re).
The dashed lines I'-Y in Figure 4 illustrate the relationship of the amplitude of longitudinal

velocity a at a point Re in the vicinity of branch II of the c.n.s, to the slope of k/aq: for

different al(Re o ). It is apparent that when a1>_0.05% (corresponding to a x (Rear)>_0.5%,

perturbations with k/a t _ 2 independent of aa will have the highest a It would be of



interest to point out the increasein the selectivity of a boundary layer with an increasein a
(the curvesacquire increasinglysharperpeaks).

Let us note that in a nongradient flow ),,, / 9, z does not depend on the Re point and is

completely determined by the amplitude of the primary wave [16]. As calculations have

shown, this is also valid for B = 0.1. In this case a change in a 1 (Reo) from 0.02 to 0.04% is

accompanied by a change in k/_ from 1.3 to 1.8, which remains constant with a further

increase in a _ (Re o). The maximum rates of increase in o" (for specific initial a 1. ) are
several times greater when B = -0.1 than when /3 = 0.1. Consequently, the amplitudes of
the subharmonic and primary waves are equalized in a narrower range of Reynolds numbers
when

,8<0.
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Figure 3. Desynchronization _a" for different values of b
0,18 (1). 0,17 (2), 0,151l {3).0,122 {4), 0,22 (5),

9.2 (6), 0.17,5 (7), Reo=4,50; F I (Re0)=
1,t5.t0--¢.
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Figure 4. The b distribution of the local rate of increase of a subharmonic at point Re = 575
(solid lines)

0.017,0, 4_l--a,=0, e--a_(Re0)=0,007%; 3-- 0z
0,035%, 5 -- 0,07°/o, 6 -- 0,1%.



The b distribution of the amplitude of a subharmonic a at point Re = 705 (dashed lines)

1'-- a_(He0)=0,035%, 2'

0,07%; 3--0,t%. 15=--0,t, Reo =_50, FI(Reo)_

l,iS.t0 -4, a(Reo)_0,001,%.

Thus, as in the case of a flat plate, a broad k-spectrum of unstable three dimensional

subharmonic perturbations occurs in gradient flows when the amplitude of a T-S plane wave

is sufficiently low ( "-- 0.02%). The most "dangerous" are three dimensional modes which are

linearly stable for all Re and whose rates of increase are an order of magnitude or more
higher than maximum (for given B and F ) linear rates of increase. The transversal wave

number k of the most unstable mode is determined by the amplitude of the T-S plane wave

and when P<0 may depend on Re.

Let us examine the change in the energy of this subharmonic mode during the evolution

process with respect to Re:
"_ t d a2_,elSlqh+lalcostp,.g
2 a2 dx

where
= 4, -- 4z-- 43 + argS-- arg v2 + arg h+.

The efficiency of energy transfer is determined by the nature of the relationship cp (Re a j.

). Figure 5 gives the function qo for different primary wave amplitudes (curves 1-3). It also

illustrates the curves arg h _. (curve 4) and arg h + + arg S - arg v (curve 5). The presence of

the imaginary parts S and v _ is a synchronizing factor determined by viscosity properties. An

increase in the amplitude of the primary wave

(a1>0.02%) has a synchronizing effect by localizing the difference in phases _- _b_- _, thus
ensuring maximum energy transfer to the given subharmonic component.

e: 4

f

_ // -"

45@ 55# 5 fcJ 750

1--a_(Reo)-0,0t%; 2--0,04%, 3--0,t%, 4--

arg h+; 5-- arg h++ arg S -- arg v2. I_=--0,1,

1_eo_450, F_(Reo)-t,15 "i0-4 b=0,31, X=500.

Figure 5. The phase function op for different primary wave amplitudes a (solid curves 1-3)
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5. In the region of nonlinear interaction the most interesting effect of the pressure gradient

(which is lacking when 8 >I 0) is an increase in the rate of increase of O" of a fixed

subharmonic mode with a decrease in its intensity a 1 (Re o ) when B< 0. This is valid with
respect to the difference of the initial phase difference from zero. This relationship means

that explosive amplification when ,_ < 0 will occur in a narrow range of Reynolds numbers
with a wide variation of initial low frequency perturbation parameters.

A direct comparison of the evolution of a triplet under conditions of different pressure

gradients would not be trivial, because it would be impossible to determine the

nondimensional values of the range of development (Re o , Re x ) and the parameters k and f

without establishing some correspondence between nondimensionalizing parameters for
different B •

Figure 6 gives an example of calculating the evolution of a triplet on a physical range (Xo, x1
) for three values of B. x o and the velocities of external flow at this point Ue (x o ), which

are assumed to coincide at it for all/_ , were chosen as common for the linear scale and the

velocity scale. Then while when /g = 0 points x o and x _ correspond to Reynolds numbers .
of Re_*' and Re _o, , when B _ 0, they correspond to Reynolds numbers of Re_"' = Re_ °_

.n (O2 ,n (a)
t t<e o /t<e_. ) . In the process the numerical values of F_. and k at point x o will coincide
for all B. As is apparent from Figure 6, a transition from faster flow (R > 0) to slower flow (B <

0) is accompanied by a significant rise in the rate of increase of the amplitudes of all

components of the triplet.

"_" 0 .ZT.T _, Old

Figure 6. A comparison of the rates of increase of the components of the triplet a (solid
lines) and a (dashed lines) for different values of _'.

Thus, calculation results indicate that resonant interaction in triads in the presence of a

pressure gradient is qualitatively similar to the case of nongradient flow. The amplitude of
the plane wave is the primary factor determining mode discrimination and the evolution of

the triplet. If the amplitude of the plane wave is greater than some sufficiently low threshold
level, a broad spectrum of three dimensional subharmonic perturbations will be excited in all

the flows considered. In slower flows the amplitudes of the primary wave and subharmonic

9



are equalized in a narrower range of Reynolds numbers and the rates of increase of both

components are much higher. The above makes it possible to infer that a positive pressure

gradient has a destabilizing effect on resonant interaction in triads, which makes the role of

gradients decisive in subharmonic transitions on actual streamline bodies.

Institute of Theoretical and Applied Mechanics of the Siberian Branch of the Soviet

Academy of Sciences, Novosibirsk
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